SITING GEOLOGICAL SEQUESTRATION PROJECTS: PUBLIC PERCEPTION, REGULATORY STRUCTURES AND LEGAL CONSIDERATIONS

Elizabeth Wilson
Carissa Schivley
Humphrey Institute of Public Affairs
University of Minnesota
LBNL Siting Workshop
March 20-23 2006

• • Technology embedded

- Site characterization → Siting
- Main points for this talk:
 - CCS will be deployed within a complex regulatory, legal, and political world
 - Technologies have stumbled: GMO's, nuclear energy, stem cell research, biotechnology
 - Work now to focus upon decision-driven risk characterization that addresses questions posed by regulatory, social and legal systems which will all affect project siting

Regulatory environment

- energy policy underground injection
 - climate/carbon policy

Legal issues · Liability

- •Short and long term • Property ownership and damages • Government assumption of long-term liability

Public Perception

- •environmental justice
- risk perception
- risk acceptance
- fairness
- ·NIMBY

CCS

Policy Considerations • Congressional/Executive Priorities Agenda setting at state/local gov't • Budgets

- - Existing inst. mandates

CO2SC2006-LBNL

Talk structure

- Regulatory considerations
- Legal considerations
- Potential social issues
- Risk management and siting research within a public policy context

Larger Climate and Energy Context

Climate

- Caldeira, Jain and Hoffert (2004) estimate that, depending on climate sensitivities, between 75% and 100% of energy will need to be carbon free by 2100 to stabilize the climate at a 2 C warming
- Larger (national or international?) accounting and credit system for avoided CO₂ – Fungible credits
- How can we ensure that injected CO₂ counts?
- Who gets credit? Who bears liability?

Energy

- Rolled out within larger regional energy planning activities
 - Regional differences within natural resources, experience with underground injection
- Public Utility Commissions
- At the end of the day, the ratepayer will pay... 100 \$/tC
- BAU by 2050, using 2x today's coal (2+ billion tons), producing ~5 billon tons of CO₂

Regulatory Considerations for Siting

- Protecting public and environmental health
- IEA needs for regulation don't fully match up with current Underground Injection control program
- Siting key for regulation, liability
 - Important component of U.S. Underground Injection Control Program
 - Required analysis
 - Wood casing???
- Geologic sequestration (large volumes, buoyant fluids, long time frames) needs different than BAU injection projects (small quantities, dense fluids, for the most part, no storage time specified)
 - What additional information is needed for current framework to meet regulatory demands?

Regulatory Considerations for Siting

- How does a regulator think? What do they care about?
- Agenda setting within a regulatory agency
- Difference between current
 - "first generation" EOR-linked projects
 - Regulated to maximize oil or gas extraction
 - Less stringent siting requirements
 - Experienced regulators
 - What happens when EOR becomes sequestration?
 - "second generation" projects within saline aquifers different legal framework
 - Deep well injection forbidden or non-existent in many states
 - Increasing importance of groundwater for drinking water
 - Institutional capacity varies greatly

Regulatory Considerations for Siting

- Everything presented at conf. is more extensive than current regulations...
 - Cadillac Seville v. Chevy Chevette
 - What is necessary to adequately site projects? Ensure protection of human and ecological health?
 - How does this differ from current practice?
 - Which mix of technologies gives sufficent information for a particular site?
 - Groundwater protection underlies current regulatory framework
 - What about mixed streams?
 - Role for developing countries
 - Risk profile alteration
 - What types of tests or mechanisms could be developed to help regulators evaluate projects?

Legal Considerations for Siting

- Considerations of liability, rights, financial risk and damages
- Balance between long term security needs and managing liability for GS projects and short term legal challenges
 - Tort and contract law (trespass, nuisance, strict liability? abnormally dangerous activities)
- Difference between
 - "first generation" EOR-linked projects
 - Hydrocarbon ownership extraction liability regime
 - What happens when EOR becomes sequestration?
 - "second generation" projects within saline aquifers different legal framework
 - Subsurface rights controlled by surface owner
 - Federal lands attractive....
 - State jurisdictions key

Legal Considerations for Siting

- From a firm perspective, what types of liability are going to drive business decisions? How does this differ across capture, transport and sequestration of CO₂?
- Large and legal
 - Oil and gas production -- Unitization -- making injection efficient, protection from liability
 - Natural gas storage power of eminent domain
 - GS in saline aquifers...federal lands?
- Liability associated with siting
 - Geophysical trespass
- Implications/affordability of remediation options on liability regime

Public perception studies on CCS

- Most people don't know about this technology yet
 - Opportunity and risk (ocean sequestration cautionary tale)
 - Concerns: leakage, property values, water
 - NUMBY— "Not Under My Backyard"
 - Location: key in siting,
 - especially important for first few projects
 - Perceived fairness
 - Public involvement in siting/permitting?
 - Characteristics of opposition: Local or national
 - Moral considerations: Future generations

Interactions between regulatory, legal, and public perception

Geology within a larger context...

- How could this play out politically? What other battles could be fought over CCS siting?
- Future GIS maps also include layers on
 - Population and demographics,
 - Native American Lands,
 - Federal lands
 - National Parks,
 - Endangered Species Habitats,
 - Sole source aquifers,
 - Aquifers for public drinking/agricultural water,
 - Jurisdictions that don't allow deep injection wells
 - Dodgy, undocumented oil and gas production (pre record keeping...)

One policy consideration for CCS

 CCS, electricity planning and the map...

Source: IPCC SR CCS, 2005

Decision driven risk characterization

- How can risk characterization (and research) be geared towards deployment?
 - driven by regulatory, legal and public perception demands
 - Leakage, water quality (direct and displacement), remediation
 - What basic tools can be developed? What will become SOP?
 - Iterative nature of activity for new technology
- Different pilot and large scale basin characterization helpful to bound risks and begin to integrate knowledge within institutions
- Better to have science to support decisions than fear...
- Jens' challenge: engage in research that is relevant for developing regulation (and legal, social and political parameters...with goal of deployment)